PL-TR-94-2310

AN IMPROVED ALGORITHM FOR
COMPUTING ALTITUDE DEPENDENT
CORRECTED GEOMAGNETIC COORDINATES

w

havnani
ein

K. H.
C

.

g e
am

Radex, Inc.
Three Preston Court
Bedford, MA 01730

December 19, 1994
Scientific Report No. 7

Approved for public release; distribution unlimited

19950509 065

PHILLIPS LABORATORY
' Directorate of Geophysics
Y AIR FORCE MATERIEL COMMAND
HANSCOM AIR FORCE BASE, MA 01731-3010




wThis technical report has been reviewed and is approved for publication"

;/’7 /7 - P n 4
(?///( i 4/ W/’ 2L ;’/—-\_:
E

DWARD C. ROBINSON
Contract Manager
Data Analysis Division

L

//77 \
gy

;1
¥ ! ; T oA S
A

ROBERT E. MCINERNEY, Directory/
Data Analysis Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain
Information Center. All others
Information Service.

If your address has changed, or
list, or if the addressee is no

additional copies from the Defense Technical
should apply to the National Technical

if you wish to be removed from the mailing
longer employed by your organization, please

notify PL/IM, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will
assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document requires that it be returned.




REPORT DOCUMENTATION PAGE Form Approved

OWB No. 0704-0188

Public resamung surcen for this coliection of miprma:lon 15 estimated 1 average 1 hour per response, :nciuding the time f0r reviewng instruclions, searching existing data sources
maintaiming the data neegded, and compieting anc reviewng the celiection of information. Send commensts regarding this burgen estimate or ;nv other aspect of s

~formation, inciuding sugaestions for reducing this buraen, 1¢ Washingion Reaacuarters Services, Direciorate Tor intormation Operations and Reports 1215‘Je*fer;”‘n

Davis Higrway, Suite 1204, Arlington, VA 222024302, and 10 the Office of Management and Budget, Paperwork Reduction Project (3704-0188), Weshington, oC 20503 ‘ -

7. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
9 December 1994 Scientific Report No. 7
4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
An Improved Algorithm for Computing Altitude Dependent PE 62101F

Corrected Geomagnetic Coordinates
PR 7659 TA GY WU AA

6. AUTHOR(S)

K H. Bhavnani Contract F19628-93-C-0023
C. A. Hein

7. PERFORMING ORGARNIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
RADEX, Inc. REPORT NUMBER
Three Preston Court . 94112

Bedford, MA 01730

9. SPCNSORING/MONITORING AGENCY RAME(S) AND ADDRESS(ES) 10, SPONSORING / MONITORING
Phillips Laboratory . AGERCY REPORT NUMBER
.29 Randolph Road
Hanscom AFB, MA 01731-3010 ' PL-TR-94-2310

Contract Manager: Edward C. Robinson/GPD
11, SUPPLEMENTARY NOTES

EREH

12z. DISTRIEUTION / AVAILABILITY STATEMENT . 12b. DISTRIEUTION CODE
Approved for Public Release
Distribution Unlimited

13. AESTRACT (Maximum 200 words)

An improved algorithm for computing altitude dependent corrected geomagnetic (CGM) coordinates from
geocentric coordinates (and, where it exists, the inverse) using spherical harmonics is described. The method
uses a tenth order spherical harmonic fit to the direction cosines (a unit vector) in a suitably chosen
intermediate, altitude adjusted coordinate system. The need for this auxiliary coordinate system is to avoid
convergence problems associated with the discontinuity in the CGM latitude at the magnetic equator at non-
zero altitude. Altitude dependence is obtained by computing the spherical harmonic fits to CGM (and inverse)
at 0, 300 and 1200 km altitude, and using a quadratic fit to interpolate each coefficient. The new algorithm
provides a good representation of the CGM compression around the South Atlantic Anomaly in addition to
modeling the increasing discontinuity with altitude at the magnetic equator. Comparisons are provided with
previous approaches. Accuracy limitations and consistency between the direct and inverse computations are
also discussed.

14. SUBJECT TERMS ) ] ) ) R ] 15. NUMBER OF PAGES
Corrected geomagnetic coordinates, Coordinate conversions, Geographic coordinates,

Geomagnetic latitude, Geomagnetic longitude, Altitude dependent coordinates, Gustafsson [T~ 5 To Dé
coordinates, International Geomagnetic Reference Field, Magnetic field line tracing

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF AasﬁaécT ..
Unclassified Unclassified Unclassifie Unlimited
NSN 7540-01-280-5500 tandard Form 298 (Rev. 2-89)

Prescnipec by ANS Std Z35-18

29



Table of Contents

. INTRODUCTION . ... ... i i e e e 1
« METHODOLOGY . . ... ... it it 3
. GENERATION OF SPHERICAL HARMONIC COEFFICIENTS ....... 35
3.1 GEOCENTRIC TO CGM TRANSFORMATION .............. 5
3.2 CGM TO GEOCENTRIC TRANSFORMATION .............. 5
. DESCRIPTIONOF THERESULTS ........ ... ... ... 6

. RECOMPUTING CGM COORDINATES FOR IGRF 1995 AND BEYOND 12

« CONCLUSIONS ... .. i i e i i i e e s 12

Accesion For

NTIS CRA&I %
DTIC TAB
U .announced 0
J.atitication

3V — e

Di.t ibution/

“Availability Codes

Avail and]|or
Special

il




List of Figures

Figure Page
1. Corrected Geomagnetic Coordinate Grid from CGLALO Tables . ......... 7
2. Same grid as Figure 1 for Bakerroutine ........................ 7
3. Grid for new routine, at O kmoaltitude . . . ... ...... .. ... ... ..... 8
4. New routine, for 300 km altitude . . ... ... .. ... .. .. .. 8
5. New routine at 1200 km altitude .. ... .. ... ..ot urenennns 9
6. Consistency of direct and inverse conversion . . ... ... .. ......co. ... 9
7. Consistency: Direct and inverse at 300 km altitude . ................ 10
8. Consistency: Direct and inverse at 1200 km altitude . ............... 10

List of Tables

Table | . v Page
1. Inversion Error Analysis: Geocentric to CGM to Geocentric . .......... 11
2. Inversion Error Analysis: CGM to Geocentric to CGM . ... .......... 11

iv




ACKNOWLEDGEMENTS

We are deeply grateful to Fred Rich of GPS, Phillips Laboratory
for introducing us to this project, and for overseeing its progress.

Kile Baker of APL, Johns Hopkins suggested both the Cartesian
spherical harmonic and the duplicate inverse approach that we have
adopted, and provided copious code, notes, and references to help
in extending his work.

The CGLALO90 line traced tables were verified using program
GEOCGM which is due to the Papitashvili’s and Gustafsson.

Bill McNeil of Radex tailored many special line tracing routines to
meet target and accuracy needs as our development progressed.




vi




1. INTRODUCTION

The motion of charged particles in the ionosphere and in the radiation belts is determined by
Earth’s magnetic field. For this reason, it is desirable to use the geomagnetic domain for
correlation with observations of charged particles. For near Earth applications, these particle
locations are therefore expressed in Earth fixed geocentric coordinates, using a simple 6371.2km
radius "spherical Earth" model, which differs slightly in altitude and latitude from the usual
geodetic "oblate Earth" model. In the early period of satellite exploration of the magnetosphere,
the use of a coordinate system, geomagnetic coordinates, based upon a centered but tilted dipole
representation of Earth’s magnetic field was often sufficient for most applications. As more
precise measurements became possible, the need arose for a coordinate system which would
more closely represent the actual magnetic field. In 1958 Hultqvist published two papers
[Hultqvist, 1958a; 1958b] defining a corrected magnetic coordinate system taking into account
higher order terms in the spherical harmonic expansion of the 1945 magnetic field model. A
real field line from Earth’s surface may be traced to the centered dipole equator. This point is
next defined to be equivalent to a line trace along a centered dipole field. The latitude and
longitude of the point in dipole coordinates are the desired "corrected” geomagnetic coordinates.

In 1965 Hakura used the higher order terms in the spherical harmonic expansion of Earth’s
magnetic field to compute tables and maps of corrected geomagnetic coordinates. Since the
actual magnetic field changes with time, it is necessary to generate new tables and maps.
Gustafsson [1970 and 1984] has provided revised corrected geomagnetic coordinates based upon
the International Geomagnetic Reference Field Epoch 1965 and Epoch 1980 (or IGRF65 and
IGRF80). The earlier paper defines a set of hypergeometric functions which may be used to
compute the corrections for a spherical harmonic representation of the magnetic field of order
up to 7. Line tracing with modern computers makes the analytic approach unnecessary while
permitting the use of higher order spherical harmonic field representations. More recently
GustafSson, et al. [1992] have performed similar calculations for the IGRF 1990 magnetic field

model. The corrected geomagnetic coordinates provided in the tables described above are for

0 km altitude. Using this definition of CGM, there are areas of Earth’s surface where magnetic
field line traces never reach the dipole equator plane. Gustafsson, et al. [1984] describes
various interpolation methods to fill in these forbidden areas.

True corrected geomagnetic coordinates are defined only at ground level, but a method is needed
to provide geomagnetic coordinates at all altitudes. This report describes the development and
implementation of such a method, which properly should be called "altitude adjusted corrected
geomagnetic coordinates”. Introduction of new terminology appears unwarranted however, and
the altitude dependent conversions as well are referred to as corrected geomagnetic coordinates.
Since the same procedure of field line tracing to the Earth-centered dipole equator applies, all
points along a field line (on one side of the magnetic equator) have the same corrected
geomagnetic coordinates (CGM). In practice, for non-zero altitudes, the actual approach taken
is to trace down to zero altitude, and to then look up conventional CGM coordinates and




interpolate using the tables printed in the above references. For IGRF90 the look up and
interpolation procedure has been automated in a routine which we shall refer to as CGLALO90.

For non-zero altitudes at or near the magnetic equator, the field lines trace down to higher
geomagnetic latitudes. The higher the altitude, the greater is the separation of the foot of the
field line from the dip equator, so that low CGM latitudes do not exist for non-zero altitudes,
and a significant discontinuity in latitude is present.

In a recent paper, Baker and Wing [1989] describe an alternative method to compute corrected
geomagnetic coordinates. In their method, the corrected geomagnetic coordinates (and the
corresponding inverses) are computed by evaluation of functions for the X, Y, and Z
components of a unit vector obtained from a fourth order spherical harmonic expansion. They
first computed the coefficients for the X, Y, Z components of a unit vector in the magnetic
dipole coordinates for both the forward and inverse transformations for altitudes 0, 150, 300 and
450 km. They developed an interpolation/extrapolation scheme for computing the spherical
harmonic coefficients for altitudes from 0 to 2000 km altitude. Since they were primarily
concerned with representing higher CGM latitudes, the equatorial problem described above was
not taken into account. As a result, the features of the South Atlantic Anomaly and the
equatorial region are not well represented in the Baker and Wing computation. The spherical
harmonic expansion computations were performed in dipole magnetic coordinates. Coordinate
conversions between geographic and dipole coordinates were accomplished by using rotation
matrices.

In this report, we will describe an improved method to calculate the CGM coordinates and their
inverses at altitudes from O to 2000 km. This approach is similar in many respects to that of
Baker and Wing, but provides an improved representation of the South Atlantic Anomaly region,
and a solution to the equatorial discontinuity problem. In Section 2 we will describe the
methodology used for the solution of this problem. In Section 3 we will provide a detailed
description of the computation of the spherical harmonic coefficients. In Section 4 we will
describe the results obtained using this method, together with graphs.




2. METHODOLOGY

For the analysis of satellite observations having a circular or near circular orbit, the use of CGM
tables and interpolation methods for a fixed altitude, such as found in CGLALO90, are well
suited. For satellites with more eccentric orbits, and other applications at non-uniform altitudes,
a functional representation in terms of a spherical harmonic expansion, such as implemented by
Baker and Wing is more suitable, because a single routine can inherently interpolate smoothly
over the entire region of space of interest. The equatorial discontinuity problem is handled by
using an auxiliary coordinate system (magnetic dipole coordinates at altitude) to compute the
spherical harmonic coefficients which are incorporated into the code. A simple mapping is used
to transform to and from dipole coordinates at altitude and dipole coordinates at 0 km altitude.
The lengthier calculations involved are usually not a burden with modern computers, and
computational efficiency techniques can be incorporated when working at a constant altitude.

In using a spherical harmonic representation of a function defined on a spherical surface, where
the function is initially specified by a table of values, there must be sufficient data in the table,
and the order of the spherical harmonic expansion must be chosen to adequately represent the
function at the tabulated values. .

The spherical harmonic coefficients for a function f, @, ,, are usually computed from the
following integrals.

a,, = [ RO.0) ¥,,04) dQ M

This is the approach used in this study. To compute these integrals it is necessary to have a
completely defined uniform grid. We found that a table of values between -88 and 88 degrees
latitude at 2 degree intervals, and 0 - 350 degrees in longitude at ten degree intervals is adequate
for a tenth order spherical harmonic expansion. All the computations described here were made
with such a coordinate grid.

A significant aspect of spherical harmonic fitting is the problem of convergence. In the theory
of Fourier series, there is a problem with the convergence of the partial sums of the Fourier
expansion for a function in the vicinity of a discontinuity. A typical example is the case of a
step function, in which the partial sums oscillate in the vicinity of the jump. Similar, but less
pronounced behavior, is found when the function to be represented is continuous, but has a
discontinuous first derivative. :

To avoid this problem (Gibbs’ phenomenon), the functions chosen for the spherical harmonic
expansion must be a periodic function in longitude (or its equivalent) and have no discontinuities.




For that reason it is not practical to use the longitude variable itself. The simplest reasonable
choice of functions are the complex exponentials exp i and exp i¢ (or their real two dimensional
vector equivalents) where 6 and ¢ are the co-latitude and longitude respectively. However,
using this approach, problems arise with the quality of the spherical harmonic expansion fit to
the actual data near the magnetic poles. We choose the unit vector approach used by Baker and
Wing because the spherical harmonic expansion fit does not exhibit any pathology in the vicinity
of the magnetic poles.

Since CGM values for non-zero altitudes have a discontinuity near the magnetic equator, it is
not practical to use a ground-based dipole coordinate system for either computing the spherical
harmonic coefficients or the spherical harmonic expansion. We used an at-altitude dipole-
coordinate system at the 300 and 1200 km altitudes to perform these computations. The altitude
dependent mapping described above to transform between the actual CGM latitude Ay and an

at-altitude dipole latitude Ay is given by:

altitude[km
cos? )\dipole = [1 + —Eﬁ[—f—l] cos? Acem @

The use of the at-altitude dipole coordinate system given by the above transformation (and its
. inverse) effectively “"closes” the discontinuity, permitting the calculation of the spherical
harmonic coefficients at the 300 and 1200 km altitudes.

To compute the spherical harmonic expansion at arbitrary altitudes between 0 and 2000 km, the
spherical harmonic coefficients for 0, 300 and 1200 km were fit to a quadratic (using
altitude/1200 as the independent variable); the actual coefficients provided in the program
contain the constant (altitude = 0 km), linear and quadratic terms obtained from the quadratic
fit. The extension from 1200 to 2000 km constitutes a safe extrapolation, but remains to be

verified.

For the computation of the geocentric to CGM coordinates, the procedure used was as follows:

(1) Compute (if new altitude was different from the last) the altitude dependent spherical
harmonic coefficients.

(2) Compute the spherical harmonic expansion for the X, Y, Z components of the unit vector
describing the orientation of the transformed point in the altitude dependent dipole coordinate
system.

(3) Compute latitude and longitude of point, and apply the altitude transformation to the at-
altitude dipole latitude. Return the computed corrected latitude and longitude values.




For the inverse computation, the procedure used was as follows:

'(1) Compute (if new altitude was different from the last) the altitude dependent spherical
harmonic coefficients for the inverse calculation.

(2) Transform the CGM input latitude to the at-altitude dipole latitude. Set error return flag and
default return value if input latitude was invalid.

(3) Compute the spherical harmonic expansion for the X, Y, Z components of the unit vector
describing the orientation of the transformed point in geocentric coordinate system.
Return the computed geocentric latitude and longitude values.

3. GENERATION OF SPHERICAL HARMONIC COEFFICIENTS

The spherical harmonic coefficients for the 0, 300 and 1200 km altitude fits for both
transformations were obtained using the tables described below using the standard formulas for
computing spherical harmonic coefficients. The spherical harmonic coefficients were computed
for the components of a unit vector in the target coordinate systems, as defined by the direction
cosines.

3.1 GEOCENTRIC TO CGM TRANSFORMATION

For 0 km altitude, the Gustafsson et al tables (corrected for misprints) were used except for a
band of ~ 15 degrees around the magnetic equator. For the equatorial region, a spline fit was
made to fill in the missing grid points, with the added requirement that the spline curve
geocentric latitudes obey the dip equator constraint at all longitudes. The modified table was
incorporated into a new version of a FORTRAN subroutine (CGLALO90) which uses a look-up
and interpolation procedure to compute CGM coordinates for arbitrary points at 0 km altitude.
For 300 and 1200 km, the field lines for the IGRF90 magnetic field model were traced from
altitude to ground using a precise field line trace routine. The new version of CGLALO90 was
then used to compute the CGM tables for the respective altitudes.

3.2 CGM TO GEOCENTRIC TRANSFORMATION

For the inverse transformation, a new version of the CGLALO inverse routine was written.
This routine uses a search procedure to locate a point within a spherical "rectangle” (or, if the
magnetic pole lies inside the rectangle, within a spherical "triangle" with the apex at the
magnetic pole), and uses calls to the new version of CGLALOS0 to perform the required
interpolations.




For 0 km altitude, the desired table was computed for a standard grid of CGM coordinates using
the new CGLALO inverse routine. For 300 and 1200 km, the input grid CGM latitudes were
converted to dipole coordinates (at altitude) as described earlier. The tables were generated for
the coordinate grid (dipole coordinates at altitude) using the CGLALO inverse routine.

The six tables (three for geocentric to CGM, and three for the inverse) were used to generate
the required spherical harmonic expansion coefficients for 0, 300 and 1200 km altitudes.

4. DESCRIPTION OF THE RESULTS

The resulting new code provides a substantial improvement in the representation of the equatorial
region, while retaining excellent agreement with the Gustafsson tables at the poles and at
medium latitudes. Figure 1 is a graph of the CGM coordinates from the corrected Gustafsson
et al [1992] IGRF 1990 model tables. Figure 2 provides a similar graph from the Baker/Wing
code which was also computed from similar Gustaffson’s tables for epoch 1987. Figures 3, 4
and 5 are graphs of the CGM coordinate at 0, 300 and 1200 km altitude obtained from the new
code. In all these graphs, the data was generated using a two degree geocentric latitude interval
between -88° and 88° and a ten degree interval in longitude at 0, 300, and 1200 km
respectively. In Figures 4 and 5 there is a marked bending of the constant longitude curves at
the edge of the equatorial gap.

Ideally, the output of the Geocentric to CGM calculations, fed into the inverse computation,
should be identical to the original input coordinate grid. A test of the consistency of the direct
and inverse transformations is illustrated in Figures 6, 7 and 8 for 0, 300 and 1200 km altitude.
These graphs exhibit deviations from the uniform spacing (2 degrees in latitude, 10 degrees in
longitude) of the original grid, particularly in the vicinity of the poles, and in the vicinity of the
South Atlantic Anomaly. The longitude difference at the poles loses significance, and a more
accurate measure is the great circle arc between the coordinate pairs. Tables 1 and 2 provide
the fraction of table values which lie in the following error intervals (in degrees) for the
Geocentric ==> CGM == > Geocentric and (where they exist) the CGM == > Geocentric
==> CGM coordinates respectively:

0°-0.1°,0.1°-0.2°, 0.2° - 0.5°, 0.5° - 1.0°, 1.0° - 2.0° and > 2.0°.

Thus, except for problems near the South Atlantic Anomaly, and near the "forbidden" band at
altitude, the new algorithm performs adequately. -
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ALT [KM]

.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1000.0
1100.0
1200.0
1300.0
1400.0
1500.0
1600.0
1700.0
1800.0
1900.0
2000.0

ALT [KM]

.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1000.0
1100.0
1200.0
1300.0
1400.0
1500.0
1600.0
1700.0
1800.0
1900.0
2000.0

0.0-0.1

.54557
.49001
.44944
.42104
.39950
.38046
.36642
.36174
.36954
.38171
.40605
.43477
.47066
.50718
.55243
.53433
.46910
.37266
.27965
.19257
.12797

0.0-0.1

.58365
.53286
.49608
.46857
.44670
.43994
.42785
42421
.43929
.46038
.49265
.51599
.55303
.59462
.65017
.63759
.55152
.44758
. 34857
.25278
.18935

Table 1.

Inversion Error Analysis

GEOCENTRIC ==> CGM ==> GEOCENTRIC

FRACTION OF ERRORS IN RANGE [deg]

0.1-0.2

.30400
.30868
.28620
.27091
.26561
.26248
.26311
.26685
.26436
.26217
.25843
.25687
.24657
.24938
.25499
.28652
.32584
.34644
.32772
.31461
.28277

0.2-0.5

.10549
.14139
.19039
.21816
.22846
.23939
24345
.24095
.23439
.22940
.21879
.20724
.19913
.17416
.13608
.12360
.13015
.17665
.25499
.30774
.34519

Table 2.

0.5-1.0

.02871
.03527
.03683
.04494
.05368
.06211
.06898
.07085
.07303
.07179
.06898
.05743
.05025
.04650
.03995
.04151
.05181
.06305
.06960
.09738
.13577

Inversion Error Analysis

CGM ==> GEOCENTRIC ==> CGM

FRACTION OF ERRORS IN RANGE [deg]
Note: Points for which the CGM to Geoc. input
were not valid were excluded.

0.1-0.2

.26799
.28320
.28170
.27632
.27665
.27177
.27662
.27540
.27143
.25980
.24632
.24663
.24453
.236558
.22700
-25911
.32348
.35977
.33468
.32269
.30509

0.2-0.5

11111
.14228
.17415
.19956
.21396
.21734
.22222
.22659
.22024
.21324
.20588
.18561
.16120
.14106
.10590
.08247
.08961
.14113
.23835
.32315
.35324
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0.5-1.0

.02399
.02846
.03170
.03399
.04129
.04505
.04900
.04960
.04643
.04739
.04126
.04461
.03746
.02474
.01519
.01823
.03091
.04167
.05735
.06759
.10324

1.0-2.0

.01030
.01248
.01904
.0255%
.03027
.03090
.03340
.03464
.03402
.03152
.02622
.02622
.01873
.01373
.01280
.01404
.02247
.03402
.04744
.05431
.05524

values

1.0-2.0

.01294
.01253
.01389
.01864
.01802
.01839
.01929
.02024
.01984
.01757
.01348
.00715
.00379
.00304
.00174
.00260
.00448
.00986
.01613
.02870
.04167

> 2.0

.00593
.01217
.01810
.01935
.02247
.02466
.02466
.02497
.02466
.02341
.02154
.01748
.01467
.00905
.00375
.00000
.00062
.00718
.02060
.03340
.05306

> 2.0

.00032
.00068
.00249
.002%2
.00338
.00751
.00502
.00397
.00278
.00163
.00041
.00000
. 00000
.00000
. 00000
.00000
.00000
. 00000
.00493
.00509
.00741




5. RECOMPUTING CGM COORDINATES FOR IGRF 1995 AND BEYOND

Assuming the use of the same algorithm, and the same order spherical harmonic expansion, an
update to the new CGM computation would only require the replacement of the existing six sets
of spherical harmonic expansion coefficients with new sets corresponding to the new magnetic
field model for the direct and inverse transformations at 0, 300 and 1200 km. The procedure
for computing the new sets of coefficients was described in Section 2. In the FORTRAN code
implementation of the new algorithm, this would be accomplished by replacing the existing
BLOCKDATA source code containing the expansion coefficients table with a new table, and
recompiling the source code with the replacement BLOCKDATA tables.

6. CONCLUSIONS

The Cartesian spherical harmonic approach of Baker and Wing [1989] for geocentric to corrected
geomagnetic conversion (and the inverse) has been enhanced by introducing auxiliary coordinates
(dipole coordinates at altitude) that are derived by applying a basic altitude adjustment algorithm
to the CGM latitudes. In this auxiliary coordinate system the magnetic equator discontinuity
described above is eliminated, permitting accurate fitting to 10th order spherical harmonic
expansions. These coordinates also overlay closely for altitudes up to 2000 km, allowing a
simple quadratic fit to each coefficient with altitude.

There are however regions, particularly in the vicinity of the South Atlantic Anomaly, for which
better representation is desirable. An offset auxiliary altitude adjusted coordinate system should
further ameliorate the irregularities, but this remains to be implemented.

The present effort employed the IGRF90 model for the required line tracing, as well as to define
the dipole equator. The coefficients that are employed do not include secular terms, and an
updated model is warranted every few years. '

Corrected geomagnetic coordinates are linked to field line tracing, and are thus used extensively
for particle mapping. There is a need to extend this application to outline ionospheric effects
at low latitudes and, in this respect, the current CGM system is deficient because points around
the geomagnetic equator on Earth’s surface at various longitudes differ significantly in L-shell
or "geomagnetic altitude". Recognizing this, a corrected eccentric geomagnetic coordinate
system, better designed for global ionospheric mapping, could be formulated.
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8. GLOSSARY AND NOTES

Earth’s magnetic field arises from contributions both within and external to it. For most near
Earth applications (typically 1 Earth radius), the external field may be ignored. The internal
field is described in terms of its geomagnetic potential, and is available in mathematical form
as spherical harmonic coefficients and their secular variations. This model is the responsibility
of the International Association of Geomagnetism and Aeronomy (IAGA), and is published
periodically as revisions to the International Geomagnetic Reference Field (IGRF). Those more
interested in the history and development of this subject are referred to the classic book
Geomagnetism [Chapman and Bartels, 1940] which in turn describes the original work of Gauss,
Schmidt who introduced Geomagnetic Coordinates, and many others.

Tonospheric phenomena near Earth are intimately controlled by the Earth fixed geomagnetic field
and, because of the substantial and unnecessarily repetitive calculations involved in field line
tracing, simplified models and procedures become essential. Although the dipole and the offset
dipole models can be determined directly from the first and second order terms of the IGRF
spherical harmonics and are useful for conceptual purposes, field line traces cannot be inferred
with adequate accuracy from these models. Fortunately, the internal geomagnetic field is Earth
fixed, and extensive a priori computations can be carried out to provide tables which relate
geographic locations to their corresponding field line trace environment. This approach was
used by Hultqvist [1958a, 1958b] to define and introduce Corrected Geomagnetic Coordinates,
and subsequently revisions were made by Hakura [1965] and Gustafsson [1970]. Their work
defines these coordinates with tables at the surface of Earth only. Later work leading to our
present effort is described in the main text of this report.

Below we describe many of the terms covered or related to the present work. The asymmetrical
nature of the geomagnetic field has given rise to the need for dipole, eccentric (or offset) dipole,
corrected geomagnetic, and dip-pole representations, all of which are distinct in some manner.
Thus, for instance, geomagnetic field lines are not truly perpendicular to Earth’s surface at the
corrected geomagnetic poles, but rather at the dip-poles. The reader should also be aware that
the field undergoes a secular variation, and the assorted magnetic poles migrate one to a few

kilometers per year.

Altitude Dependent Corrected Geomagnetic coordinates:
Extension of Corrected Geomagnetic Coordinates to -altitudes above Earth’s surface. Defined
so that all points along a field line possess the same coordinates. Not part of Hultqvist’s original

definition of CGM coordinates.
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Corrected Geomagnetic (CGM) coordinates:
Earth fixed magnetic latitude and longitude. Altitude is undefined. Prescribed by Hultqvist and

Gustafsson and used in this report. Entails tracing along field lines to the dipole equator, and
then determining the geomagnetic coordinates corresponding to this point on the dipole equator
as if it had been reached by tracing along a pure dipole. Zero corrected geomagnetic longitude
is the meridian which passes through the geographic South Pole, with East positive.

Corrected Geomagnetic (CGM) coordinate Poles:

Locations in the polar regions from where internal geomagnetic field line traces effectively
intercept the dipole equatorial plane at an infinite distance. For Epoch 1990.0 on which the
present report is based, the north and south corrected geomagnetic poles are at 81.0°N latitude
and 278.5°E longitude, and at 74.0°S latitude and 126.0°E longitude, respectively. Inversely
incidentally, the corrected geomagnetic coordinates of the geographic north and south poles are
at 82.30°N latitude and 170.89°E longitude, and at 73.89°S latitude and 18.55°E longitude,
respectively.

Dip Equator:

The plane at low latitudes where Earth’s field becomes horizontal, so that the magnetic dip angle
is zero. This resolves the problem with the Hultqvist procedure of tracing to the dipole equator,
which results in imaginary latitudes when the field line terminates inside 1 Earth radius. Field
lines undulate and the geographic latitude corresponding to zero corrected geomagnetic latitude
sometimes had to be estimated by curve fitting.

Dip Poles:
North and south polar locations where the geomagnetic field at Earth’s surface is vertical.
Roughly at 78°N latitude and 256°E longitude, and at 65°S latitude and 139°E longitude,

respectively.

Dipole:

Simple first order Earth centered representation of geomagnetic field. For epoch 1990, the first
order X,Y,Z dipole moments are 1851, -5411, 29775 nanoTesla respectively, which places the
dipole north magnetic pole roughly at 79°N latitude and 289°E longitude, and the south
magnetic pole at 79°S latitude and 109°E longitude. The plane through the center of Earth
normal to this axis determines the dipole equator. -

Dipole Equator or Eccentric Dipole Equator:

Since the eccentric offset is roughly in the plane of the pure Dipole equator, the same equatorial
plane through Earth’s center, normal to the axis of the poles, applies to Dipole or to Eccentric
Dipole. See Dipole and Eccentric Dipole.

Dipole Poles:
North and south intercepts of dipole axis with Earth’s surface. See Dipole.
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Eccentric (or offset) Dipole:

Field lines do not trace out normal to Earth’s surface at the dipole poles, but considerably
removed particularly for the South magnetic pole, which implies an eccentric rather than a
centered dipole. The next few terms in the representation of Earth’s field in IGRF90 suggest
an offset dipole centered approximately at geocentric X,Y,Z rectangular coordinates -400, 270,
190 km respectively, roughly in the direction of the Marianas Trench and farthest removed from

the South Atlantic Anomaly.

Eccentric Dipole Poles:
North and south intercepts of eccentric dipole axis with Earth’s surface, roughly at 82°N latitude
and 259°F longitude, and at 75°S latitude and 119°E longitude, respectively. ~See Eccentric

Dipole. :

Geocentric:
Farth centered. Since latitude is defined by the angle between the vector to the location and the

equatorial plane, geocentric coordinates imply a spherical Earth model. Magnetic field models,
such as the International Geomagnetic Reference Field (IGRF) use 6371.2 km as the mean Earth
radius to normalize radial distance and, for convenience, geocentric altitude refers to this radius
when describing particle locations and the geomagnetic environment.

Geodetic:
Refers to oblate Earth and the local horizontal plane. Not used or implied in this report.

Geographic coordinates:

Earth fixed latitude, longitude, and altitude. Although commonly loosely applied to geodetic or
geocentric, the spherical 6371.2 km radius of Earth applies throughout this report, with all
latitudes, altitudes, and field line trace terminations determined by this model. Geodetic and
geocentric longitudes are identical, with 0° passing through the Greenwich meridian, and East

positive.

Geomagnetic coordinates: _
Earth fixed magnetic dipole latitude and longitude. Altitude is undefined. The pure dipole axis
is tilted with respect to Earth’s axis and the poles approach the magnetic poles. Zero
geomagnetic longitude is the geomagnetic meridian which passes through the geographic South
Pole, with East positive. '

Inverse Coordinate Conversion:

Obtains geographic coordinates, given CGM coordinates. The reverse of the geographic to
CGM coordinate conversion. Since the conversions are altitude dependent, the altitude at which
the geographic coordinates are desired must be specified. Except for the fitting approximations
arising from analytical modeling, inversion following a coordinate conversion should return to

the original latitude and longitude.
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